

Fig. 1. The volume change on melting of $\mathrm{He^3}$ and $\mathrm{He^4}$ as a function of pressure.

fluid is zero. In Figs. 6 and 7 are plotted the values of $(\partial \alpha_f/\partial T)_P$ and $(\partial \beta_f/\partial P)_T$, respectively, for He³ along the melting curve. Also shown in Fig. 6 are $(\partial \alpha_f/\partial T)_P$ values for the $\alpha_f = 0$ points of Fig. 5. For He⁴ at temperatures below the lambda temperature, a plot of α_f versus T at P = 25.47 kg/cm² is shown in Fig. 8. Figure 9 is the condensed phase diagram for He³, showing the solid $\alpha \to \text{solid } \beta$ transition line (extrapolated to T = 0) and the $\alpha_f = 0$ locus in the liquid domain. Deviations of the individual experimental points from the curves of Fig. 9 are not visible on the scale.

The experimental and derived melting properties of He^4 are presented at various melting points in Table 1. Values of ΔS_m were computed from ΔV_m and